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It is quite hard to solve non-linear systems of equations, while linear systems are quite easy 
to study. There are numerical techniques which help to approximate nonlinear systems with 
linear ones in the hope that the solutions of the linear systems are close enough to the 
solutions of the nonlinear systems. We will not discuss this here. Instead, we will focus our 
attention on linear systems.  

For the sake of simplicity, we will restrict ourselves to three, at most four, unknowns. The 
reader interested in the case of more unknowns may easily extend the following ideas.  

Definition. The equation  

a x + b y + c z + d w = h  
 
where a, b, c, d, and h are known numbers, while x, y, z, and w are unknown numbers, is 
called a linear equation. If h =0, the linear equation is said to be homogeneous. A linear 
system is a set of linear equations and a homogeneous linear system is a set of 
homogeneous linear equations.  

For example,  

 
 
 
and  

 
 
 
are linear systems, while  

 
 
is a nonlinear system (because of y2). The system  

 
 
is an homogeneous linear system.  



Matrix Representation of a Linear System  

Matrices are helpful in rewriting a linear system in a very simple form. The algebraic 
properties of matrices may then be used to solve systems. First, consider the linear system  

 
 
 
Set the matrices  

 
 
 
Using matrix multiplications, we can rewrite the linear system above as the matrix equation  

 
 
 
As you can see this is far nicer than the equations. But sometimes it is worth to solve the 
system directly without going through the matrix form. The matrix A is called the matrix 
coefficient of the linear system. The matrix C is called the non-homogeneous term. When 

, the linear system is homogeneous. The matrix X is the unknown matrix. Its 
entries are the unknowns of the linear system. The augmented matrix associated with the 
system is the matrix [A|C], where  

 
 
 

In general if the linear system has n equations with m unknowns, then the matrix 
coefficient will be a nxm matrix and the augmented matrix an nx(m+1) matrix. Now we 
turn our attention to the solutions of a system.  

Definition. Two linear systems with n unknowns are said to be equivalent if and only if 
they have the same set of solutions.  

This definition is important since the idea behind solving a system is to find an equivalent 
system which is easy to solve. You may wonder how we will come up with such system? 
Easy, we do that through elementary operations. Indeed, it is clear that if we interchange 



two equations, the new system is still equivalent to the old one. If we multiply an equation 
with a nonzero number, we obtain a new system still equivalent to old one. And finally 
replacing one equation with the sum of two equations, we again obtain an equivalent 
system. These operations are called elementary operations on systems. Let us see how it 
works in a particular case.  

Example. Consider the linear system  

 
 
 

The idea is to keep the first equation and work on the last two. In doing that, we will try to 
kill one of the unknowns and solve for the other two. For example, if we keep the first and 
second equation, and subtract the first one from the last one, we get the equivalent system  

 
 
 
Next we keep the first and the last equation, and we subtract the first from the second. We 
get the equivalent system  

 
 
 
Now we focus on the second and the third equation. We repeat the same procedure. Try to 
kill one of the two unknowns (y or z). Indeed, we keep the first and second equation, and 
we add the second to the third after multiplying it by 3. We get  

 
 
 
This obviously implies z = -2. From the second equation, we get y = -2, and finally from 
the first equation we get x = 4. Therefore the linear system has one solution  

 
 
 
Going from the last equation to the first while solving for the unknowns is called back-
solving.  



Keep in mind that linear systems for which the matrix coefficient is upper-triangular are 
easy to solve. This is particularly true, if the matrix is in echelon form. So the trick is to 
perform elementary operations to transform the initial linear system into another one for 
which the coefficient matrix is in echelon form.  
Using our knowledge about matrices, is there anyway we can rewrite what we did above in 
matrix form which will make our notation (or representation) easier? Indeed, consider the 
augmented matrix  

 
 
 
Let us perform some elementary row operations on this matrix. Indeed, if we keep the first 
and second row, and subtract the first one from the last one we get  

 
 
 
Next we keep the first and the last rows, and we subtract the first from the second. We get  

 
 
 
Then we keep the first and second row, and we add the second to the third after multiplying 
it by 3 to get  

 
 
 
This is a triangular matrix which is not in echelon form. The linear system for which this 
matrix is an augmented one is  

 
 
 
As you can see we obtained the same system as before. In fact, we followed the same 
elementary operations performed above. In every step the new matrix was exactly the 
augmented matrix associated to the new system. This shows that instead of writing the 
systems over and over again, it is easy to play around with the elementary row operations 



and once we obtain a triangular matrix, write the associated linear system and then solve it. 
This is known as Gaussian Elimination. Let us summarize the procedure:  

Gaussian Elimination. Consider a linear system.  

1.  Construct the augmented matrix for the system;  
2.  Use elementary row operations to transform the augmented matrix into a triangular one;  
3.  Write down the new linear system for which the triangular matrix is the associated 
augmented matrix;  
4.  Solve the new system. You may need to assign some parametric values to some 
unknowns, and then apply the method of back substitution to solve the new system.  

Example. Solve the following system via Gaussian elimination  

 
 
 
The augmented matrix is  

 
 
 
We use elementary row operations to transform this matrix into a triangular one. We keep 
the first row and use it to produce all zeros elsewhere in the first column. We have  

 
 
 
Next we keep the first and second row and try to have zeros in the second column. We get  

 
 
 
Next we keep the first three rows. We add the last one to the third to get  



 
 
 
This is a triangular matrix. Its associated system is  
 

 
 
 
Clearly we have v = 1. Set z=s and w=t, then we have  

 
 
 
The first equation implies  

x = 2 + y + z - w - v.  
Using algebraic manipulations, we get  

x = - - s - t.  
 
 
Putting all the stuff together, we have  

 
 
 

Example. Use Gaussian elimination to solve the linear system  



 
 
 
The associated augmented matrix is  

 
 
 
We keep the first row and subtract the first row multiplied by 2 from the second row. We 
get  

 
 
 
This is a triangular matrix. The associated system is  

 
 
 
Clearly the second equation implies that this system has no solution. Therefore this linear 
system has no solution.  

Definition. A linear system is called inconsistent or over-determined if it does not have a 
solution. In other words, the set of solutions is empty. Otherwise the linear system is called 
consistent.  

Following the example above, we see that if we perform elementary row operations on the 
augmented matrix of the system and get a matrix with one of its rows equal to 

 

, where , then the system is inconsistent.  



Examples 

Let's start simple, and work our way up to messier examples. 

• Solve the following system of equations. 

5x + 4y –    z = 0 
      10y – 3z = 11 
                  z = 3 

It's fairly easy to see how to proceed in this case. I'll just back-substitute the z-value from 
the third equation into the second equation, solve the result for y, and then plug z and 
y into the first equation and solve the result for x. 

10y – 3(3) = 11 
10y – 9 = 11 
10y = 20 
y = 2 

5x + 4(2) – (3) = 0 
5x + 8 – 3 = 0 
5x + 5 = 0 
5x = –5 
x = –1 

Then the solution is (x, y, z) = (–1, 2, 3). 

The reason this system was easy to solve is that the system was "triangular"; this refers to the 
equations having the form of a triangle, because of the lower equations containing only the later 
variables.  

 

The point is that, in this format, the system is simple to solve. And Gaussian elimination is the 
method we'll use to convert systems to this upper triangular form, using the row operations we 
learned when we did the addition method. 

• Solve the following system of equations using Gaussian elimination. 

–3x + 2y – 6z = 6 
  5x + 7y – 5z = 6 
     x + 4y – 2z = 8 

No equation is solved for a variable, so I'll have to do the multiplication-and-addition thing to 
simplify this system. In order to keep track of my work, I'll write down each step as I go. But 
I'll do my computations on scratch paper. Here is how I did it: 

The first thing to do is to get rid of the leading x-terms in two of the rows. For now, I'll just 
look at which rows will be easy to clear out; I can switch rows later to get the system into 



"upper triangular" form. There is no rule that says I have to use the x-term from the first 
row, and, in this case, I think it will be simpler to use the x-term from the third row, since its 
coefficient is simply "1". So I'll multiply the third row by 3, and add it to the first row. I do 
the computations on scratch paper: 

 

...and then I write down the results: 

 

(When we were solving two-variable systems, we could multiply a row, rewriting the system 
off to the side, and then add down. There is no space for this in a three-variable system, 
which is why we need the scratch paper.) 

Warning: Since I didn't actually do anything to the third row, I copied it down, unchanged, 
into the new matrix of equations. I used the third row, but I didn't actually change it. Don't 
confuse "using" with "changing". 

To get smaller numbers for coefficients, I'll multiply the first row by one-half: 

 

Now I'll multiply the third row by –5 and add this to the second row. I do my work on 
scratch paper: 

 

...and then I write down the results: Copyright © El11 All Rights Reserved 

 

I didn't do anything with the first row, so I copied it down unchanged. I worked with the third 
row, but I only worked on the second row, so the second row is updated and the third row is 
copied over unchanged. 



Okay, now the x-column is cleared out except for the leading term in the third row. So next I 
have to work on the y-column. 

Warning: Since the third equation has an x-term, I cannot use it on either of the other two 
equations any more (or I'll undo my progress). I can work on the equation, but not with it. 

If I add twice the first row to the second row, this will give me a leading 1 in the second row. 
I won't have gotten rid of the leading y-term in the second row, but I will have converted it 
(without getting involved in fractions) to a form that is simpler to deal with. (You should 
keep an eye out for this sort of simplification.) First I do the scratch work: 

 

...and then I write down the results: 

 

Now I can use the second row to clear out the y-term in the first row. I'll multiply the second 
row by –7 and add. First I do the scratch work: 

 

...and then I write down the results: 

 

I can tell what z is now, but, just to be thorough, I'll divide the first row by 43. Then I'll 
rearrange the rows to put them in upper-triangular form: 

 

Now I can start the process of back-solving: 



y – 7(1) = –4 
y – 7 = –4 
y = 3 

x + 4(3) – 2(1) = 8 
x + 12 – 2 = 8 
x + 10 = 8 
x = –2 

Then the solution is (x, y, z) = (–2, 3, 1). 

Note: There is nothing sacred about the steps I used in solving the above system; there was 
nothing special about how I solved this system. You could work in a different order or simplify 
different rows, and still come up with the correct answer. These systems are sufficiently 
complicated that there is unlikely to be one right way of computing the answer. So don't stress over 
"how did she know to do that next?", because there is no rule. I just did whatever struck my fancy; I 
did whatever seemed simplest or whatever came to mind first. Don't worry if you would have used 
completely different steps. As long as each step along the way is correct, you'll come up with the 
same answer. 

 

In the above example, I could have gone further in my computations and been more thorough-going 
in my row operations, clearing out all the y-terms other than that in the second row and all the z-
terms other than that in the first row. This is what the process would then have looked like: 

 

This way, I can just read off the values of x, y, and z, and I don't have to bother with the back-
substitution. This more-complete method of solving is called "Gauss-Jordan elimination" (with the 



equations ending up in what is called "reduced-row-echelon form"). Many texts only go as far as 
Gaussian elimination, but I've always found it easier to continue on and do Gauss-Jordan. 

Note that I did two row operations at once in that last step before switching the rows. As long as I'm 
not working with and working on the same row in the same step, this is okay. In this case, I was 
working with the first row and working on the second and third rows. 
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